Logo Search packages:      
Sourcecode: qemu-linaro version File versions  Download package

kvm.c

/*
 * QEMU KVM support
 *
 * Copyright (C) 2006-2008 Qumranet Technologies
 * Copyright IBM, Corp. 2008
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/utsname.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
#include "kvm.h"
#include "cpu.h"
#include "gdbstub.h"
#include "host-utils.h"
#include "hw/pc.h"
#include "hw/apic.h"
#include "ioport.h"
#include "kvm_x86.h"

#ifdef CONFIG_KVM_PARA
#include <linux/kvm_para.h>
#endif
//
//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
    do { } while (0)
#endif

#define MSR_KVM_WALL_CLOCK  0x11
#define MSR_KVM_SYSTEM_TIME 0x12

#ifndef BUS_MCEERR_AR
#define BUS_MCEERR_AR 4
#endif
#ifndef BUS_MCEERR_AO
#define BUS_MCEERR_AO 5
#endif

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_INFO(SET_TSS_ADDR),
    KVM_CAP_INFO(EXT_CPUID),
    KVM_CAP_INFO(MP_STATE),
    KVM_CAP_LAST_INFO
};

static bool has_msr_star;
static bool has_msr_hsave_pa;
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
static bool has_msr_async_pf_en;
#endif
static int lm_capable_kernel;

static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
{
    struct kvm_cpuid2 *cpuid;
    int r, size;

    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
    cpuid->nent = max;
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
    if (r == 0 && cpuid->nent >= max) {
        r = -E2BIG;
    }
    if (r < 0) {
        if (r == -E2BIG) {
            qemu_free(cpuid);
            return NULL;
        } else {
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
                    strerror(-r));
            exit(1);
        }
    }
    return cpuid;
}

uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
                                      uint32_t index, int reg)
{
    struct kvm_cpuid2 *cpuid;
    int i, max;
    uint32_t ret = 0;
    uint32_t cpuid_1_edx;

    max = 1;
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
        max *= 2;
    }

    for (i = 0; i < cpuid->nent; ++i) {
        if (cpuid->entries[i].function == function &&
            cpuid->entries[i].index == index) {
            switch (reg) {
            case R_EAX:
                ret = cpuid->entries[i].eax;
                break;
            case R_EBX:
                ret = cpuid->entries[i].ebx;
                break;
            case R_ECX:
                ret = cpuid->entries[i].ecx;
                break;
            case R_EDX:
                ret = cpuid->entries[i].edx;
                switch (function) {
                case 1:
                    /* KVM before 2.6.30 misreports the following features */
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
                    break;
                case 0x80000001:
                    /* On Intel, kvm returns cpuid according to the Intel spec,
                     * so add missing bits according to the AMD spec:
                     */
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
                    ret |= cpuid_1_edx & 0x183f7ff;
                    break;
                }
                break;
            }
        }
    }

    qemu_free(cpuid);

    return ret;
}

#ifdef CONFIG_KVM_PARA
struct kvm_para_features {
    int cap;
    int feature;
} para_features[] = {
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
#ifdef KVM_CAP_ASYNC_PF
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
#endif
    { -1, -1 }
};

static int get_para_features(CPUState *env)
{
    int i, features = 0;

    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
            features |= (1 << para_features[i].feature);
        }
    }
#ifdef KVM_CAP_ASYNC_PF
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
#endif
    return features;
}
#endif

#ifdef KVM_CAP_MCE
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
                                     int *max_banks)
{
    int r;

    r = kvm_check_extension(s, KVM_CAP_MCE);
    if (r > 0) {
        *max_banks = r;
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
    }
    return -ENOSYS;
}

static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
{
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
}

static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
{
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
}

static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
{
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
    int r;

    kmsrs->nmsrs = n;
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
    free(kmsrs);
    return r;
}

/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
static int kvm_mce_in_progress(CPUState *env)
{
    struct kvm_msr_entry msr_mcg_status = {
        .index = MSR_MCG_STATUS,
    };
    int r;

    r = kvm_get_msr(env, &msr_mcg_status, 1);
    if (r == -1 || r == 0) {
        fprintf(stderr, "Failed to get MCE status\n");
        return 0;
    }
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
}

struct kvm_x86_mce_data
{
    CPUState *env;
    struct kvm_x86_mce *mce;
    int abort_on_error;
};

static void kvm_do_inject_x86_mce(void *_data)
{
    struct kvm_x86_mce_data *data = _data;
    int r;

    /* If there is an MCE exception being processed, ignore this SRAO MCE */
    if ((data->env->mcg_cap & MCG_SER_P) &&
        !(data->mce->status & MCI_STATUS_AR)) {
        if (kvm_mce_in_progress(data->env)) {
            return;
        }
    }

    r = kvm_set_mce(data->env, data->mce);
    if (r < 0) {
        perror("kvm_set_mce FAILED");
        if (data->abort_on_error) {
            abort();
        }
    }
}

static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
                                  int flag)
{
    struct kvm_x86_mce_data data = {
        .env = env,
        .mce = mce,
        .abort_on_error = (flag & ABORT_ON_ERROR),
    };

    if (!env->mcg_cap) {
        fprintf(stderr, "MCE support is not enabled!\n");
        return;
    }

    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
}

static void kvm_mce_broadcast_rest(CPUState *env);
#endif

void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
                        int flag)
{
#ifdef KVM_CAP_MCE
    struct kvm_x86_mce mce = {
        .bank = bank,
        .status = status,
        .mcg_status = mcg_status,
        .addr = addr,
        .misc = misc,
    };

    if (flag & MCE_BROADCAST) {
        kvm_mce_broadcast_rest(cenv);
    }

    kvm_inject_x86_mce_on(cenv, &mce, flag);
#else
    if (flag & ABORT_ON_ERROR) {
        abort();
    }
#endif
}

static void cpu_update_state(void *opaque, int running, int reason)
{
    CPUState *env = opaque;

    if (running) {
        env->tsc_valid = false;
    }
}

int kvm_arch_init_vcpu(CPUState *env)
{
    struct {
        struct kvm_cpuid2 cpuid;
        struct kvm_cpuid_entry2 entries[100];
    } __attribute__((packed)) cpuid_data;
    uint32_t limit, i, j, cpuid_i;
    uint32_t unused;
    struct kvm_cpuid_entry2 *c;
#ifdef CONFIG_KVM_PARA
    uint32_t signature[3];
#endif

    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);

    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
    env->cpuid_ext_features |= i;

    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
                                                             0, R_EDX);
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
                                                             0, R_ECX);
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
                                                             0, R_EDX);


    cpuid_i = 0;

#ifdef CONFIG_KVM_PARA
    /* Paravirtualization CPUIDs */
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
    c = &cpuid_data.entries[cpuid_i++];
    memset(c, 0, sizeof(*c));
    c->function = KVM_CPUID_SIGNATURE;
    c->eax = 0;
    c->ebx = signature[0];
    c->ecx = signature[1];
    c->edx = signature[2];

    c = &cpuid_data.entries[cpuid_i++];
    memset(c, 0, sizeof(*c));
    c->function = KVM_CPUID_FEATURES;
    c->eax = env->cpuid_kvm_features & get_para_features(env);
#endif

    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);

    for (i = 0; i <= limit; i++) {
        c = &cpuid_data.entries[cpuid_i++];

        switch (i) {
        case 2: {
            /* Keep reading function 2 till all the input is received */
            int times;

            c->function = i;
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
            times = c->eax & 0xff;

            for (j = 1; j < times; ++j) {
                c = &cpuid_data.entries[cpuid_i++];
                c->function = i;
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
            }
            break;
        }
        case 4:
        case 0xb:
        case 0xd:
            for (j = 0; ; j++) {
                c->function = i;
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
                c->index = j;
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);

                if (i == 4 && c->eax == 0) {
                    break;
                }
                if (i == 0xb && !(c->ecx & 0xff00)) {
                    break;
                }
                if (i == 0xd && c->eax == 0) {
                    break;
                }
                c = &cpuid_data.entries[cpuid_i++];
            }
            break;
        default:
            c->function = i;
            c->flags = 0;
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
            break;
        }
    }
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);

    for (i = 0x80000000; i <= limit; i++) {
        c = &cpuid_data.entries[cpuid_i++];

        c->function = i;
        c->flags = 0;
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
    }

    cpuid_data.cpuid.nent = cpuid_i;

#ifdef KVM_CAP_MCE
    if (((env->cpuid_version >> 8)&0xF) >= 6
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
        uint64_t mcg_cap;
        int banks;

        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
            perror("kvm_get_mce_cap_supported FAILED");
        } else {
            if (banks > MCE_BANKS_DEF)
                banks = MCE_BANKS_DEF;
            mcg_cap &= MCE_CAP_DEF;
            mcg_cap |= banks;
            if (kvm_setup_mce(env, &mcg_cap)) {
                perror("kvm_setup_mce FAILED");
            } else {
                env->mcg_cap = mcg_cap;
            }
        }
    }
#endif

    qemu_add_vm_change_state_handler(cpu_update_state, env);

    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
}

void kvm_arch_reset_vcpu(CPUState *env)
{
    env->exception_injected = -1;
    env->interrupt_injected = -1;
    env->xcr0 = 1;
    if (kvm_irqchip_in_kernel()) {
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
                                          KVM_MP_STATE_UNINITIALIZED;
    } else {
        env->mp_state = KVM_MP_STATE_RUNNABLE;
    }
}

static int kvm_get_supported_msrs(KVMState *s)
{
    static int kvm_supported_msrs;
    int ret = 0;

    /* first time */
    if (kvm_supported_msrs == 0) {
        struct kvm_msr_list msr_list, *kvm_msr_list;

        kvm_supported_msrs = -1;

        /* Obtain MSR list from KVM.  These are the MSRs that we must
         * save/restore */
        msr_list.nmsrs = 0;
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
        if (ret < 0 && ret != -E2BIG) {
            return ret;
        }
        /* Old kernel modules had a bug and could write beyond the provided
           memory. Allocate at least a safe amount of 1K. */
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
                                              msr_list.nmsrs *
                                              sizeof(msr_list.indices[0])));

        kvm_msr_list->nmsrs = msr_list.nmsrs;
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
        if (ret >= 0) {
            int i;

            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
                if (kvm_msr_list->indices[i] == MSR_STAR) {
                    has_msr_star = true;
                    continue;
                }
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
                    has_msr_hsave_pa = true;
                    continue;
                }
            }
        }

        free(kvm_msr_list);
    }

    return ret;
}

int kvm_arch_init(KVMState *s)
{
    uint64_t identity_base = 0xfffbc000;
    int ret;
    struct utsname utsname;

    ret = kvm_get_supported_msrs(s);
    if (ret < 0) {
        return ret;
    }

    uname(&utsname);
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;

    /*
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
     * Since these must be part of guest physical memory, we need to allocate
     * them, both by setting their start addresses in the kernel and by
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
     *
     * Older KVM versions may not support setting the identity map base. In
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
     * size.
     */
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
        /* Allows up to 16M BIOSes. */
        identity_base = 0xfeffc000;

        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
        if (ret < 0) {
            return ret;
        }
    }
#endif
    /* Set TSS base one page after EPT identity map. */
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
    if (ret < 0) {
        return ret;
    }

    /* Tell fw_cfg to notify the BIOS to reserve the range. */
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
    if (ret < 0) {
        fprintf(stderr, "e820_add_entry() table is full\n");
        return ret;
    }

    return 0;
}

static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = 3;
    lhs->present = 1;
    lhs->dpl = 3;
    lhs->db = 0;
    lhs->s = 1;
    lhs->l = 0;
    lhs->g = 0;
    lhs->avl = 0;
    lhs->unusable = 0;
}

static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    unsigned flags = rhs->flags;
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
    lhs->present = (flags & DESC_P_MASK) != 0;
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
    lhs->s = (flags & DESC_S_MASK) != 0;
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
    lhs->g = (flags & DESC_G_MASK) != 0;
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
    lhs->unusable = 0;
}

static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
                 (rhs->present * DESC_P_MASK) |
                 (rhs->dpl << DESC_DPL_SHIFT) |
                 (rhs->db << DESC_B_SHIFT) |
                 (rhs->s * DESC_S_MASK) |
                 (rhs->l << DESC_L_SHIFT) |
                 (rhs->g * DESC_G_MASK) |
                 (rhs->avl * DESC_AVL_MASK);
}

static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
{
    if (set) {
        *kvm_reg = *qemu_reg;
    } else {
        *qemu_reg = *kvm_reg;
    }
}

static int kvm_getput_regs(CPUState *env, int set)
{
    struct kvm_regs regs;
    int ret = 0;

    if (!set) {
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
        if (ret < 0) {
            return ret;
        }
    }

    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
#ifdef TARGET_X86_64
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
#endif

    kvm_getput_reg(&regs.rflags, &env->eflags, set);
    kvm_getput_reg(&regs.rip, &env->eip, set);

    if (set) {
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
    }

    return ret;
}

static int kvm_put_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i;

    memset(&fpu, 0, sizeof fpu);
    fpu.fsw = env->fpus & ~(7 << 11);
    fpu.fsw |= (env->fpstt & 7) << 11;
    fpu.fcw = env->fpuc;
    for (i = 0; i < 8; ++i) {
        fpu.ftwx |= (!env->fptags[i]) << i;
    }
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
    fpu.mxcsr = env->mxcsr;

    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
}

#ifdef KVM_CAP_XSAVE
#define XSAVE_CWD_RIP     2
#define XSAVE_CWD_RDP     4
#define XSAVE_MXCSR       6
#define XSAVE_ST_SPACE    8
#define XSAVE_XMM_SPACE   40
#define XSAVE_XSTATE_BV   128
#define XSAVE_YMMH_SPACE  144
#endif

static int kvm_put_xsave(CPUState *env)
{
#ifdef KVM_CAP_XSAVE
    int i, r;
    struct kvm_xsave* xsave;
    uint16_t cwd, swd, twd, fop;

    if (!kvm_has_xsave()) {
        return kvm_put_fpu(env);
    }

    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
    memset(xsave, 0, sizeof(struct kvm_xsave));
    cwd = swd = twd = fop = 0;
    swd = env->fpus & ~(7 << 11);
    swd |= (env->fpstt & 7) << 11;
    cwd = env->fpuc;
    for (i = 0; i < 8; ++i) {
        twd |= (!env->fptags[i]) << i;
    }
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
            sizeof env->fpregs);
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
            sizeof env->xmm_regs);
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
            sizeof env->ymmh_regs);
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
    qemu_free(xsave);
    return r;
#else
    return kvm_put_fpu(env);
#endif
}

static int kvm_put_xcrs(CPUState *env)
{
#ifdef KVM_CAP_XCRS
    struct kvm_xcrs xcrs;

    if (!kvm_has_xcrs()) {
        return 0;
    }

    xcrs.nr_xcrs = 1;
    xcrs.flags = 0;
    xcrs.xcrs[0].xcr = 0;
    xcrs.xcrs[0].value = env->xcr0;
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
#else
    return 0;
#endif
}

static int kvm_put_sregs(CPUState *env)
{
    struct kvm_sregs sregs;

    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
    if (env->interrupt_injected >= 0) {
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
                (uint64_t)1 << (env->interrupt_injected % 64);
    }

    if ((env->eflags & VM_MASK)) {
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
    } else {
        set_seg(&sregs.cs, &env->segs[R_CS]);
        set_seg(&sregs.ds, &env->segs[R_DS]);
        set_seg(&sregs.es, &env->segs[R_ES]);
        set_seg(&sregs.fs, &env->segs[R_FS]);
        set_seg(&sregs.gs, &env->segs[R_GS]);
        set_seg(&sregs.ss, &env->segs[R_SS]);
    }

    set_seg(&sregs.tr, &env->tr);
    set_seg(&sregs.ldt, &env->ldt);

    sregs.idt.limit = env->idt.limit;
    sregs.idt.base = env->idt.base;
    sregs.gdt.limit = env->gdt.limit;
    sregs.gdt.base = env->gdt.base;

    sregs.cr0 = env->cr[0];
    sregs.cr2 = env->cr[2];
    sregs.cr3 = env->cr[3];
    sregs.cr4 = env->cr[4];

    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
    sregs.apic_base = cpu_get_apic_base(env->apic_state);

    sregs.efer = env->efer;

    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
}

static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
                              uint32_t index, uint64_t value)
{
    entry->index = index;
    entry->data = value;
}

static int kvm_put_msrs(CPUState *env, int level)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int n = 0;

    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
    if (has_msr_star) {
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
    }
    if (has_msr_hsave_pa) {
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
    }
#ifdef TARGET_X86_64
    if (lm_capable_kernel) {
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
    }
#endif
    if (level == KVM_PUT_FULL_STATE) {
        /*
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
         * writeback. Until this is fixed, we only write the offset to SMP
         * guests after migration, desynchronizing the VCPUs, but avoiding
         * huge jump-backs that would occur without any writeback at all.
         */
        if (smp_cpus == 1 || env->tsc != 0) {
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
        }
    }
    /*
     * The following paravirtual MSRs have side effects on the guest or are
     * too heavy for normal writeback. Limit them to reset or full state
     * updates.
     */
    if (level >= KVM_PUT_RESET_STATE) {
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
                          env->system_time_msr);
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
        if (has_msr_async_pf_en) {
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
                              env->async_pf_en_msr);
        }
#endif
    }
#ifdef KVM_CAP_MCE
    if (env->mcg_cap) {
        int i;

        if (level == KVM_PUT_RESET_STATE) {
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
        } else if (level == KVM_PUT_FULL_STATE) {
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
            }
        }
    }
#endif

    msr_data.info.nmsrs = n;

    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);

}


static int kvm_get_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i, ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
    if (ret < 0) {
        return ret;
    }

    env->fpstt = (fpu.fsw >> 11) & 7;
    env->fpus = fpu.fsw;
    env->fpuc = fpu.fcw;
    for (i = 0; i < 8; ++i) {
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
    }
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
    env->mxcsr = fpu.mxcsr;

    return 0;
}

static int kvm_get_xsave(CPUState *env)
{
#ifdef KVM_CAP_XSAVE
    struct kvm_xsave* xsave;
    int ret, i;
    uint16_t cwd, swd, twd, fop;

    if (!kvm_has_xsave()) {
        return kvm_get_fpu(env);
    }

    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
    if (ret < 0) {
        qemu_free(xsave);
        return ret;
    }

    cwd = (uint16_t)xsave->region[0];
    swd = (uint16_t)(xsave->region[0] >> 16);
    twd = (uint16_t)xsave->region[1];
    fop = (uint16_t)(xsave->region[1] >> 16);
    env->fpstt = (swd >> 11) & 7;
    env->fpus = swd;
    env->fpuc = cwd;
    for (i = 0; i < 8; ++i) {
        env->fptags[i] = !((twd >> i) & 1);
    }
    env->mxcsr = xsave->region[XSAVE_MXCSR];
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
            sizeof env->fpregs);
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
            sizeof env->xmm_regs);
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
            sizeof env->ymmh_regs);
    qemu_free(xsave);
    return 0;
#else
    return kvm_get_fpu(env);
#endif
}

static int kvm_get_xcrs(CPUState *env)
{
#ifdef KVM_CAP_XCRS
    int i, ret;
    struct kvm_xcrs xcrs;

    if (!kvm_has_xcrs()) {
        return 0;
    }

    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
    if (ret < 0) {
        return ret;
    }

    for (i = 0; i < xcrs.nr_xcrs; i++) {
        /* Only support xcr0 now */
        if (xcrs.xcrs[0].xcr == 0) {
            env->xcr0 = xcrs.xcrs[0].value;
            break;
        }
    }
    return 0;
#else
    return 0;
#endif
}

static int kvm_get_sregs(CPUState *env)
{
    struct kvm_sregs sregs;
    uint32_t hflags;
    int bit, i, ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
    if (ret < 0) {
        return ret;
    }

    /* There can only be one pending IRQ set in the bitmap at a time, so try
       to find it and save its number instead (-1 for none). */
    env->interrupt_injected = -1;
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
        if (sregs.interrupt_bitmap[i]) {
            bit = ctz64(sregs.interrupt_bitmap[i]);
            env->interrupt_injected = i * 64 + bit;
            break;
        }
    }

    get_seg(&env->segs[R_CS], &sregs.cs);
    get_seg(&env->segs[R_DS], &sregs.ds);
    get_seg(&env->segs[R_ES], &sregs.es);
    get_seg(&env->segs[R_FS], &sregs.fs);
    get_seg(&env->segs[R_GS], &sregs.gs);
    get_seg(&env->segs[R_SS], &sregs.ss);

    get_seg(&env->tr, &sregs.tr);
    get_seg(&env->ldt, &sregs.ldt);

    env->idt.limit = sregs.idt.limit;
    env->idt.base = sregs.idt.base;
    env->gdt.limit = sregs.gdt.limit;
    env->gdt.base = sregs.gdt.base;

    env->cr[0] = sregs.cr0;
    env->cr[2] = sregs.cr2;
    env->cr[3] = sregs.cr3;
    env->cr[4] = sregs.cr4;

    cpu_set_apic_base(env->apic_state, sregs.apic_base);

    env->efer = sregs.efer;
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);

#define HFLAG_COPY_MASK \
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)

    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);

    if (env->efer & MSR_EFER_LMA) {
        hflags |= HF_LMA_MASK;
    }

    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
    } else {
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
            !(hflags & HF_CS32_MASK)) {
            hflags |= HF_ADDSEG_MASK;
        } else {
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
        }
    }
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;

    return 0;
}

static int kvm_get_msrs(CPUState *env)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int ret, i, n;

    n = 0;
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
    if (has_msr_star) {
        msrs[n++].index = MSR_STAR;
    }
    if (has_msr_hsave_pa) {
        msrs[n++].index = MSR_VM_HSAVE_PA;
    }

    if (!env->tsc_valid) {
        msrs[n++].index = MSR_IA32_TSC;
        env->tsc_valid = !vm_running;
    }

#ifdef TARGET_X86_64
    if (lm_capable_kernel) {
        msrs[n++].index = MSR_CSTAR;
        msrs[n++].index = MSR_KERNELGSBASE;
        msrs[n++].index = MSR_FMASK;
        msrs[n++].index = MSR_LSTAR;
    }
#endif
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
    if (has_msr_async_pf_en) {
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
    }
#endif

#ifdef KVM_CAP_MCE
    if (env->mcg_cap) {
        msrs[n++].index = MSR_MCG_STATUS;
        msrs[n++].index = MSR_MCG_CTL;
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
            msrs[n++].index = MSR_MC0_CTL + i;
        }
    }
#endif

    msr_data.info.nmsrs = n;
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
    if (ret < 0) {
        return ret;
    }

    for (i = 0; i < ret; i++) {
        switch (msrs[i].index) {
        case MSR_IA32_SYSENTER_CS:
            env->sysenter_cs = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_ESP:
            env->sysenter_esp = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_EIP:
            env->sysenter_eip = msrs[i].data;
            break;
        case MSR_STAR:
            env->star = msrs[i].data;
            break;
#ifdef TARGET_X86_64
        case MSR_CSTAR:
            env->cstar = msrs[i].data;
            break;
        case MSR_KERNELGSBASE:
            env->kernelgsbase = msrs[i].data;
            break;
        case MSR_FMASK:
            env->fmask = msrs[i].data;
            break;
        case MSR_LSTAR:
            env->lstar = msrs[i].data;
            break;
#endif
        case MSR_IA32_TSC:
            env->tsc = msrs[i].data;
            break;
        case MSR_VM_HSAVE_PA:
            env->vm_hsave = msrs[i].data;
            break;
        case MSR_KVM_SYSTEM_TIME:
            env->system_time_msr = msrs[i].data;
            break;
        case MSR_KVM_WALL_CLOCK:
            env->wall_clock_msr = msrs[i].data;
            break;
#ifdef KVM_CAP_MCE
        case MSR_MCG_STATUS:
            env->mcg_status = msrs[i].data;
            break;
        case MSR_MCG_CTL:
            env->mcg_ctl = msrs[i].data;
            break;
#endif
        default:
#ifdef KVM_CAP_MCE
            if (msrs[i].index >= MSR_MC0_CTL &&
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
            }
#endif
            break;
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
        case MSR_KVM_ASYNC_PF_EN:
            env->async_pf_en_msr = msrs[i].data;
            break;
#endif
        }
    }

    return 0;
}

static int kvm_put_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };

    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}

static int kvm_get_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
    if (ret < 0) {
        return ret;
    }
    env->mp_state = mp_state.mp_state;
    if (kvm_irqchip_in_kernel()) {
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
    }
    return 0;
}

static int kvm_put_vcpu_events(CPUState *env, int level)
{
#ifdef KVM_CAP_VCPU_EVENTS
    struct kvm_vcpu_events events;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    events.exception.injected = (env->exception_injected >= 0);
    events.exception.nr = env->exception_injected;
    events.exception.has_error_code = env->has_error_code;
    events.exception.error_code = env->error_code;

    events.interrupt.injected = (env->interrupt_injected >= 0);
    events.interrupt.nr = env->interrupt_injected;
    events.interrupt.soft = env->soft_interrupt;

    events.nmi.injected = env->nmi_injected;
    events.nmi.pending = env->nmi_pending;
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);

    events.sipi_vector = env->sipi_vector;

    events.flags = 0;
    if (level >= KVM_PUT_RESET_STATE) {
        events.flags |=
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
    }

    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
#else
    return 0;
#endif
}

static int kvm_get_vcpu_events(CPUState *env)
{
#ifdef KVM_CAP_VCPU_EVENTS
    struct kvm_vcpu_events events;
    int ret;

    if (!kvm_has_vcpu_events()) {
        return 0;
    }

    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
    if (ret < 0) {
       return ret;
    }
    env->exception_injected =
       events.exception.injected ? events.exception.nr : -1;
    env->has_error_code = events.exception.has_error_code;
    env->error_code = events.exception.error_code;

    env->interrupt_injected =
        events.interrupt.injected ? events.interrupt.nr : -1;
    env->soft_interrupt = events.interrupt.soft;

    env->nmi_injected = events.nmi.injected;
    env->nmi_pending = events.nmi.pending;
    if (events.nmi.masked) {
        env->hflags2 |= HF2_NMI_MASK;
    } else {
        env->hflags2 &= ~HF2_NMI_MASK;
    }

    env->sipi_vector = events.sipi_vector;
#endif

    return 0;
}

static int kvm_guest_debug_workarounds(CPUState *env)
{
    int ret = 0;
#ifdef KVM_CAP_SET_GUEST_DEBUG
    unsigned long reinject_trap = 0;

    if (!kvm_has_vcpu_events()) {
        if (env->exception_injected == 1) {
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
        } else if (env->exception_injected == 3) {
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
        }
        env->exception_injected = -1;
    }

    /*
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
     * by updating the debug state once again if single-stepping is on.
     * Another reason to call kvm_update_guest_debug here is a pending debug
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
     * reinject them via SET_GUEST_DEBUG.
     */
    if (reinject_trap ||
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
        ret = kvm_update_guest_debug(env, reinject_trap);
    }
#endif /* KVM_CAP_SET_GUEST_DEBUG */
    return ret;
}

static int kvm_put_debugregs(CPUState *env)
{
#ifdef KVM_CAP_DEBUGREGS
    struct kvm_debugregs dbgregs;
    int i;

    if (!kvm_has_debugregs()) {
        return 0;
    }

    for (i = 0; i < 4; i++) {
        dbgregs.db[i] = env->dr[i];
    }
    dbgregs.dr6 = env->dr[6];
    dbgregs.dr7 = env->dr[7];
    dbgregs.flags = 0;

    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
#else
    return 0;
#endif
}

static int kvm_get_debugregs(CPUState *env)
{
#ifdef KVM_CAP_DEBUGREGS
    struct kvm_debugregs dbgregs;
    int i, ret;

    if (!kvm_has_debugregs()) {
        return 0;
    }

    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
    if (ret < 0) {
        return ret;
    }
    for (i = 0; i < 4; i++) {
        env->dr[i] = dbgregs.db[i];
    }
    env->dr[4] = env->dr[6] = dbgregs.dr6;
    env->dr[5] = env->dr[7] = dbgregs.dr7;
#endif

    return 0;
}

int kvm_arch_put_registers(CPUState *env, int level)
{
    int ret;

    assert(cpu_is_stopped(env) || qemu_cpu_self(env));

    ret = kvm_getput_regs(env, 1);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_put_xsave(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_put_xcrs(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_put_sregs(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_put_msrs(env, level);
    if (ret < 0) {
        return ret;
    }
    if (level >= KVM_PUT_RESET_STATE) {
        ret = kvm_put_mp_state(env);
        if (ret < 0) {
            return ret;
        }
    }
    ret = kvm_put_vcpu_events(env, level);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_put_debugregs(env);
    if (ret < 0) {
        return ret;
    }
    /* must be last */
    ret = kvm_guest_debug_workarounds(env);
    if (ret < 0) {
        return ret;
    }
    return 0;
}

int kvm_arch_get_registers(CPUState *env)
{
    int ret;

    assert(cpu_is_stopped(env) || qemu_cpu_self(env));

    ret = kvm_getput_regs(env, 0);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_xsave(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_xcrs(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_sregs(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_msrs(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_mp_state(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_vcpu_events(env);
    if (ret < 0) {
        return ret;
    }
    ret = kvm_get_debugregs(env);
    if (ret < 0) {
        return ret;
    }
    return 0;
}

void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
    int ret;

    /* Inject NMI */
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
        DPRINTF("injected NMI\n");
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
        if (ret < 0) {
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
                    strerror(-ret));
        }
    }

    if (!kvm_irqchip_in_kernel()) {
        /* Force the VCPU out of its inner loop to process the INIT request */
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
            env->exit_request = 1;
        }

        /* Try to inject an interrupt if the guest can accept it */
        if (run->ready_for_interrupt_injection &&
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
            (env->eflags & IF_MASK)) {
            int irq;

            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
            irq = cpu_get_pic_interrupt(env);
            if (irq >= 0) {
                struct kvm_interrupt intr;

                intr.irq = irq;
                DPRINTF("injected interrupt %d\n", irq);
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
                if (ret < 0) {
                    fprintf(stderr,
                            "KVM: injection failed, interrupt lost (%s)\n",
                            strerror(-ret));
                }
            }
        }

        /* If we have an interrupt but the guest is not ready to receive an
         * interrupt, request an interrupt window exit.  This will
         * cause a return to userspace as soon as the guest is ready to
         * receive interrupts. */
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
            run->request_interrupt_window = 1;
        } else {
            run->request_interrupt_window = 0;
        }

        DPRINTF("setting tpr\n");
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
    }
}

void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
{
    if (run->if_flag) {
        env->eflags |= IF_MASK;
    } else {
        env->eflags &= ~IF_MASK;
    }
    cpu_set_apic_tpr(env->apic_state, run->cr8);
    cpu_set_apic_base(env->apic_state, run->apic_base);
}

int kvm_arch_process_irqchip_events(CPUState *env)
{
    if (kvm_irqchip_in_kernel()) {
        return 0;
    }

    if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
        env->halted = 0;
    }
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
        kvm_cpu_synchronize_state(env);
        do_cpu_init(env);
    }
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
        kvm_cpu_synchronize_state(env);
        do_cpu_sipi(env);
    }

    return env->halted;
}

static int kvm_handle_halt(CPUState *env)
{
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
          (env->eflags & IF_MASK)) &&
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
        env->halted = 1;
        return 0;
    }

    return 1;
}

static bool host_supports_vmx(void)
{
    uint32_t ecx, unused;

    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
    return ecx & CPUID_EXT_VMX;
}

#define VMX_INVALID_GUEST_STATE 0x80000021

int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
{
    uint64_t code;
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_HLT:
        DPRINTF("handle_hlt\n");
        ret = kvm_handle_halt(env);
        break;
    case KVM_EXIT_SET_TPR:
        ret = 1;
        break;
    case KVM_EXIT_FAIL_ENTRY:
        code = run->fail_entry.hardware_entry_failure_reason;
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
                code);
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
            fprintf(stderr,
                    "\nIf you're runnning a guest on an Intel machine without "
                        "unrestricted mode\n"
                    "support, the failure can be most likely due to the guest "
                        "entering an invalid\n"
                    "state for Intel VT. For example, the guest maybe running "
                        "in big real mode\n"
                    "which is not supported on less recent Intel processors."
                        "\n\n");
        }
        ret = -1;
        break;
    case KVM_EXIT_EXCEPTION:
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
                run->ex.exception, run->ex.error_code);
        ret = -1;
        break;
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
    }

    return ret;
}

#ifdef KVM_CAP_SET_GUEST_DEBUG
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
    static const uint8_t int3 = 0xcc;

    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
        return -EINVAL;
    }
    return 0;
}

int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
    uint8_t int3;

    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
        return -EINVAL;
    }
    return 0;
}

static struct {
    target_ulong addr;
    int len;
    int type;
} hw_breakpoint[4];

static int nb_hw_breakpoint;

static int find_hw_breakpoint(target_ulong addr, int len, int type)
{
    int n;

    for (n = 0; n < nb_hw_breakpoint; n++) {
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
            (hw_breakpoint[n].len == len || len == -1)) {
            return n;
        }
    }
    return -1;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        len = 1;
        break;
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        switch (len) {
        case 1:
            break;
        case 2:
        case 4:
        case 8:
            if (addr & (len - 1)) {
                return -EINVAL;
            }
            break;
        default:
            return -EINVAL;
        }
        break;
    default:
        return -ENOSYS;
    }

    if (nb_hw_breakpoint == 4) {
        return -ENOBUFS;
    }
    if (find_hw_breakpoint(addr, len, type) >= 0) {
        return -EEXIST;
    }
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
    hw_breakpoint[nb_hw_breakpoint].len = len;
    hw_breakpoint[nb_hw_breakpoint].type = type;
    nb_hw_breakpoint++;

    return 0;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    int n;

    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
    if (n < 0) {
        return -ENOENT;
    }
    nb_hw_breakpoint--;
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];

    return 0;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    nb_hw_breakpoint = 0;
}

static CPUWatchpoint hw_watchpoint;

int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
{
    int handle = 0;
    int n;

    if (arch_info->exception == 1) {
        if (arch_info->dr6 & (1 << 14)) {
            if (cpu_single_env->singlestep_enabled) {
                handle = 1;
            }
        } else {
            for (n = 0; n < 4; n++) {
                if (arch_info->dr6 & (1 << n)) {
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
                    case 0x0:
                        handle = 1;
                        break;
                    case 0x1:
                        handle = 1;
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
                        hw_watchpoint.flags = BP_MEM_WRITE;
                        break;
                    case 0x3:
                        handle = 1;
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
                        hw_watchpoint.flags = BP_MEM_ACCESS;
                        break;
                    }
                }
            }
        }
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
        handle = 1;
    }
    if (!handle) {
        cpu_synchronize_state(cpu_single_env);
        assert(cpu_single_env->exception_injected == -1);

        cpu_single_env->exception_injected = arch_info->exception;
        cpu_single_env->has_error_code = 0;
    }

    return handle;
}

void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
{
    const uint8_t type_code[] = {
        [GDB_BREAKPOINT_HW] = 0x0,
        [GDB_WATCHPOINT_WRITE] = 0x1,
        [GDB_WATCHPOINT_ACCESS] = 0x3
    };
    const uint8_t len_code[] = {
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
    };
    int n;

    if (kvm_sw_breakpoints_active(env)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
    if (nb_hw_breakpoint > 0) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
        dbg->arch.debugreg[7] = 0x0600;
        for (n = 0; n < nb_hw_breakpoint; n++) {
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
        }
    }
}
#endif /* KVM_CAP_SET_GUEST_DEBUG */

bool kvm_arch_stop_on_emulation_error(CPUState *env)
{
    return !(env->cr[0] & CR0_PE_MASK) ||
           ((env->segs[R_CS].selector  & 3) != 3);
}

static void hardware_memory_error(void)
{
    fprintf(stderr, "Hardware memory error!\n");
    exit(1);
}

#ifdef KVM_CAP_MCE
static void kvm_mce_broadcast_rest(CPUState *env)
{
    struct kvm_x86_mce mce = {
        .bank = 1,
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
        .addr = 0,
        .misc = 0,
    };
    CPUState *cenv;

    /* Broadcast MCA signal for processor version 06H_EH and above */
    if (cpu_x86_support_mca_broadcast(env)) {
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
            if (cenv == env) {
                continue;
            }
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
        }
    }
}

static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
{
    struct kvm_x86_mce mce = {
        .bank = 9,
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
                  | MCI_STATUS_AR | 0x134,
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
        .addr = paddr,
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
    };
    int r;

    r = kvm_set_mce(env, &mce);
    if (r < 0) {
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
        abort();
    }
    kvm_mce_broadcast_rest(env);
}

static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
{
    struct kvm_x86_mce mce = {
        .bank = 9,
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
                  | 0xc0,
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
        .addr = paddr,
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
    };
    int r;

    r = kvm_set_mce(env, &mce);
    if (r < 0) {
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
        abort();
    }
    kvm_mce_broadcast_rest(env);
}

static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
{
    struct kvm_x86_mce mce = {
        .bank = 9,
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
                  | 0xc0,
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
        .addr = paddr,
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
    };

    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
    kvm_mce_broadcast_rest(env);
}

#endif

int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
{
#if defined(KVM_CAP_MCE)
    void *vaddr;
    ram_addr_t ram_addr;
    target_phys_addr_t paddr;

    if ((env->mcg_cap & MCG_SER_P) && addr
        && (code == BUS_MCEERR_AR
            || code == BUS_MCEERR_AO)) {
        vaddr = (void *)addr;
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
            fprintf(stderr, "Hardware memory error for memory used by "
                    "QEMU itself instead of guest system!\n");
            /* Hope we are lucky for AO MCE */
            if (code == BUS_MCEERR_AO) {
                return 0;
            } else {
                hardware_memory_error();
            }
        }

        if (code == BUS_MCEERR_AR) {
            /* Fake an Intel architectural Data Load SRAR UCR */
            kvm_mce_inj_srar_dataload(env, paddr);
        } else {
            /*
             * If there is an MCE excpetion being processed, ignore
             * this SRAO MCE
             */
            if (!kvm_mce_in_progress(env)) {
                /* Fake an Intel architectural Memory scrubbing UCR */
                kvm_mce_inj_srao_memscrub(env, paddr);
            }
        }
    } else
#endif
    {
        if (code == BUS_MCEERR_AO) {
            return 0;
        } else if (code == BUS_MCEERR_AR) {
            hardware_memory_error();
        } else {
            return 1;
        }
    }
    return 0;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
#if defined(KVM_CAP_MCE)
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
        void *vaddr;
        ram_addr_t ram_addr;
        target_phys_addr_t paddr;

        /* Hope we are lucky for AO MCE */
        vaddr = addr;
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
            fprintf(stderr, "Hardware memory error for memory used by "
                    "QEMU itself instead of guest system!: %p\n", addr);
            return 0;
        }
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
    } else
#endif
    {
        if (code == BUS_MCEERR_AO) {
            return 0;
        } else if (code == BUS_MCEERR_AR) {
            hardware_memory_error();
        } else {
            return 1;
        }
    }
    return 0;
}

Generated by  Doxygen 1.6.0   Back to index